Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
1.
Genes Chromosomes Cancer ; 63(3): e23229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481055

RESUMO

A close relationship has been demonstrated between genomic complexity and clinical outcome in uterine smooth muscle tumors. We studied the genomic profiles by array-CGH of 28 fumarate hydratase deficient leiomyomas and 37 leiomyomas with bizarre nuclei (LMBN) from 64 patients. Follow-up was available for 46 patients (from three to 249 months, mean 87.3 months). All patients were alive without evidence of disease. For 51 array-CGH interpretable tumors the mean Genomic Index (GI) was 16.4 (median: 9.8; from 1 to 57.8), significantly lower than the mean GI in LMS (mean GI 51.8, p < 0.001). We described three groups: (1) a group with FH deletion (24/58) with low GI (mean GI: 11 vs. 22,4, p = 0.02), (2) a group with TP53 deletion (17/58) with higher GI (22.4 vs. 11 p = 0.02), and (3) a group without genomic events on FH or TP53 genes (17/58) (mean GI:18.3; from 1 to 57.8). Because none of these tumors recurred and none showed morphological features of LMS we concluded that GI at the cut-off of 10 was not applicable in these subtypes of LM. By integration of all those findings, a GI <10 in LMBN remains a valuable argument for benignity. Conversely, in LMBN a GI >10 or alteration in tumor suppressor genes, should not alone warrant a diagnosis of malignancy. Nine tumors were tested with Nanocind CINSARC® signature and all were classified in low risk of recurrence. We propose, based on our observations, a diagnostic approach of these challenging lesions.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Fumarato Hidratase/genética , Leiomioma/genética , Leiomioma/patologia , Genes p53 , Genômica
2.
Am J Obstet Gynecol ; 230(4): 438.e1-438.e15, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191017

RESUMO

BACKGROUND: Although phenotypic associations between female reproductive characteristics and uterine leiomyomata have long been observed in epidemiologic investigations, the shared genetic architecture underlying these complex phenotypes remains unclear. OBJECTIVE: We aimed to investigate the shared genetic basis, pleiotropic effects, and potential causal relationships underlying reproductive traits (age at menarche, age at natural menopause, and age at first birth) and uterine leiomyomata. STUDY DESIGN: With the use of large-scale, genome-wide association studies conducted among women of European ancestry for age at menarche (n=329,345), age at natural menopause (n=201,323), age at first birth (n=418,758), and uterine leiomyomata (ncases/ncontrols=35,474/267,505), we performed a comprehensive, genome-wide, cross-trait analysis to examine systematically the common genetic influences between reproductive traits and uterine leiomyomata. RESULTS: Significant global genetic correlations were identified between uterine leiomyomata and age at menarche (rg, -0.17; P=3.65×10-10), age at natural menopause (rg, 0.23; P=3.26×10-07), and age at first birth (rg, -0.16; P=1.96×10-06). Thirteen genomic regions were further revealed as contributing significant local correlations (P<.05/2353) to age at natural menopause and uterine leiomyomata. A cross-trait meta-analysis identified 23 shared loci, 3 of which were novel. A transcriptome-wide association study found 15 shared genes that target tissues of the digestive, exo- or endocrine, nervous, and cardiovascular systems. Mendelian randomization suggested causal relationships between a genetically predicted older age at menarche (odds ratio, 0.88; 95% confidence interval, 0.85-0.92; P=1.50×10-10) or older age at first birth (odds ratio, 0.95; 95% confidence interval, 0.90-0.99; P=.02) and a reduced risk for uterine leiomyomata and between a genetically predicted older age at natural menopause and an increased risk for uterine leiomyomata (odds ratio, 1.08; 95% confidence interval, 1.06-1.09; P=2.30×10-27). No causal association in the reverse direction was found. CONCLUSION: Our work highlights that there are substantial shared genetic influences and putative causal links that underlie reproductive traits and uterine leiomyomata. The findings suggest that early identification of female reproductive risk factors may facilitate the initiation of strategies to modify potential uterine leiomyomata risk.


Assuntos
Estudo de Associação Genômica Ampla , Leiomioma , Feminino , Humanos , Fenótipo , Menopausa/genética , Fatores de Risco , Leiomioma/epidemiologia , Leiomioma/genética
3.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38290796

RESUMO

Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Pessoa de Meia-Idade , Negro ou Afro-Americano , Perfilação da Expressão Gênica , Leiomioma/genética , Leiomioma/metabolismo , Miométrio/metabolismo , Microambiente Tumoral , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Útero/metabolismo , Brancos
4.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255982

RESUMO

Bromodomain-containing proteins (BRDs) are involved in many biological processes, most notably epigenetic regulation of transcription, and BRD dysfunction has been linked to many diseases, including tumorigenesis. However, the role of BRDs in the pathogenesis of uterine fibroids (UFs) is entirely unknown. The present study aimed to determine the expression pattern of BRD9 in UFs and matched myometrium and further assess the impact of a BRD9 inhibitor on UF phenotype and epigenetic/epitranscriptomic changes. Our studies demonstrated that the levels of BRD9 were significantly upregulated in UFs compared to matched myometrium, suggesting that the aberrant BRD expression may contribute to the pathogenesis of UFs. We then evaluated the potential roles of BRD9 using its specific inhibitor, I-BRD9. Targeted inhibition of BRD9 suppressed UF tumorigenesis with increased apoptosis and cell cycle arrest, decreased cell proliferation, and extracellular matrix deposition in UF cells. The latter is the key hallmark of UFs. Unbiased transcriptomic profiling coupled with downstream bioinformatics analysis further and extensively demonstrated that targeted inhibition of BRD9 impacted the cell cycle- and ECM-related biological pathways and reprogrammed the UF cell epigenome and epitranscriptome in UFs. Taken together, our studies support the critical role of BRD9 in UF cells and the strong interconnection between BRD9 and other pathways controlling the UF progression. Targeted inhibition of BRDs might provide a non-hormonal treatment option for this most common benign tumor in women of reproductive age.


Assuntos
Epigenoma , Leiomioma , Humanos , Feminino , Epigênese Genética , Proteínas que Contêm Bromodomínio , Leiomioma/genética , Carcinogênese/genética , Transformação Celular Neoplásica , Fatores de Transcrição , Transdução de Sinais
5.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279317

RESUMO

The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.


Assuntos
Leiomioma , Complexo Mediador , RNA Longo não Codificante , Neoplasias Uterinas , Feminino , Humanos , Etnicidade , Leiomioma/genética , Leiomioma/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Mutação , Miométrio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
6.
Eur J Obstet Gynecol Reprod Biol ; 294: 65-70, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218160

RESUMO

OBJECTIVE: The link between the systemic vasculature system and tumor biology is here investigated by studying the contribution of CßS (844ins68), MTHFR (677C > T), NOS3 (4a/4b), CYBA (C242T), and ACE1 (I/D) genes to leiomyoma onset, uterus and leiomyoma volumes. METHODS: DNA samples from 130 women with leiomyomas and 527 from healthy women were genotyped by PCR or PCR-RFLP. Qui-square (χ2) or Fisher's exact test were used to test associations. All the mentioned tests were performed in IBM® SPSS® Statistics Version 28. Statistical significance was defined as a p-value < 0.05. RESULTS: Results revealed that CßS (in the codominant and allelic models, p = 0.044 and, p = 0.015, OR = 1.791 [1.114-2.879], respectively), MTHFR (in the codominant, allelic and dominant models, p = 0.009, p = 0.002, OR = 0.585 [0.416-0.824] and p = 0.003, OR = 0.527 [0.346-0.802], respectively) and ACE1 (dominant model, p = 0.045, OR = 0.639 [0.411-0.992]) genes are associated with leiomyoma onset. NOS3 4a4a genotype is associated with a lower uterus volume (p = 0.004). This study also uncovers intriguing epistatic interactions among some genes that further accentuate their roles in disease modulation. Indeed, the epistatic interactions between the CC genotype (MTHFR) and (+/+) (CßS; p = 0.003), 4b4b (NOS3; p = 0.006, OR = 2.050 [1.223-3.439]) or DD (ACE1; p < 0.001, OR = 2.362 [1.438-3.880]) were shown to be associated with the disease, while 4a presence (NOS3) in epistasis with I presence (ACE1), increased the effect protection having just the I allele presence (p = 0.029, OR = 0.446 [0.214-0.930]). CONCLUSIONS: We conclude that variation in genes related to the systemic vascular system can play a role in the onset and development of leiomyoma.


Assuntos
Leiomioma , Polimorfismo Genético , Humanos , Feminino , Genótipo , Polimorfismo de Fragmento de Restrição , DNA , Leiomioma/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo III/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética
7.
Reprod Biomed Online ; 48(2): 103584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061975

RESUMO

RESEARCH QUESTION: Are the observed associations between female reproductive factors and sex hormones with the risk of uterine leiomyoma truly causal associations? DESIGN: The putative causal relationships between female reproductive factors and sex hormones with uterine leiomyoma were investigated using two-sample Mendelian randomization. Statistics on exposure-associated genetic variants were obtained from genome-wide association studies (GWAS). The uterine leiomyoma GWAS from the FinnGen and FibroGENE consortia were used as outcome data for discovery and replication analyses, respectively. Results were pooled by meta-analysis. Sensitivity analyses ensured robustness of the Mendelian randomization analysis. RESULTS: When FinnGen GWAS were used as outcome data, a causal relationship was found between age at menarche (OR 0.84, P < 0.0001), age at menopause (OR 1.08, P < 0.0001), number of live births (OR 0.25, P < 0.001) and total testosterone levels (OR 0.90, P < 0.001) with the risk of uterine leiomyoma. When FibroGENE GWAS were used as outcome data, Mendelian randomization results for age at menopause, the number of live births and total testosterone levels were replicated. In the meta-analysis, a later age at menopause (OR 1.08, P < 0.0001) was associated with an increased risk of uterine leiomyoma. A higher number of live births (OR 0.25, P < 0.0001) and higher total testosterone levels (OR 0.90, P < 0.0001) were associated with a decreased risk of uterine leiomyoma. CONCLUSIONS: A causal relationship between later age at menopause, lower number of live births and lower total testosterone levels with increased risk of uterine leiomyoma was found.


Assuntos
Estudo de Associação Genômica Ampla , Leiomioma , Humanos , Feminino , Análise da Randomização Mendeliana , Fatores Sexuais , Hormônios Esteroides Gonadais , Leiomioma/genética , Testosterona
8.
Reprod Sci ; 31(2): 291-308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37516697

RESUMO

Uterine leiomyomas are the most common tumor of reproductive-age women worldwide. Although benign, uterine fibroids cause significant morbidity and adversely impact the quality of life for affected women. Somatic mutations in the exon 2 of the mediator complex subunit 12 (MED-12) gene represent the most common single gene mutation associated with uterine leiomyomas. The objective of this review was to evaluate the current role of MED-12 mutation in the pathophysiology of uterine fibroids, to assess the prevalence of MED-12 mutation among different populations, and to identify the most common subtypes of MED-12 mutations found in uterine fibroids. A comprehensive search was conducted using Pubmed, Embase, Scopus, and the Web of Science. English-language publications that evaluated MED-12 mutation and uterine fibroids in humans, whether experimental or clinical, were considered. We identified 380 studies, of which 23 were included, comprising 1353 patients and 1872 fibroid tumors. Of the total number of tumors analyzed, 1045 (55.8%) harbored a MED-12 mutation. Among the 23 studies included, the frequency of MED-12 mutation varied from 31.1 to 80% in fibroid samples. The most common type of MED-12 mutation was a heterozygous missense mutation affecting codon 44 of exon 2, specifically the nucleotide 131. Studies reported that MED-12 mutation acts by increasing levels of AKT and disrupting the cyclin C-CDK8/19 kinase activity. The overall average prevalence of MED-12 mutation in uterine fibroids was found to be 55.8% across the global population, though the frequency varied greatly among different countries.


Assuntos
Leiomioma , Neoplasias Uterinas , Humanos , Feminino , Neoplasias Uterinas/genética , Qualidade de Vida , Complexo Mediador/genética , Leiomioma/genética , Leiomioma/patologia , Mutação
9.
BMC Cancer ; 23(1): 1215, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066476

RESUMO

BACKGROUND: The objective of this study was to estimate the accuracy of transcriptome-based classifier in differential diagnosis of uterine leiomyoma and leiomyosarcoma. We manually selected 114 normal uterine tissue and 31 leiomyosarcoma samples from publicly available transcriptome data in UCSC Xena as training/validation sets. We developed pre-processing procedure and gene selection method to sensitively find genes of larger variance in leiomyosarcoma than normal uterine tissues. Through our method, 17 genes were selected to build transcriptome-based classifier. The prediction accuracies of deep feedforward neural network (DNN), support vector machine (SVM), random forest (RF), and gradient boosting (GB) models were examined. We interpret the biological functionality of selected genes via network-based analysis using GeneMANIA. To validate the performance of trained model, we additionally collected 35 clinical samples of leiomyosarcoma and leiomyoma as a test set (18 + 17 as 1st and 2nd test sets). RESULTS: We discovered genes expressed in a highly variable way in leiomyosarcoma while these genes are expressed in a conserved way in normal uterine samples. These genes were mainly associated with DNA replication. As gene selection and model training were made in leiomyosarcoma and uterine normal tissue, proving discriminant of ability between leiomyosarcoma and leiomyoma is necessary. Thus, further validation of trained model was conducted in newly collected clinical samples of leiomyosarcoma and leiomyoma. The DNN classifier performed sensitivity 0.88, 0.77 (8/9, 7/9) while the specificity 1.0 (8/8, 8/8) in two test data set supporting that the selected genes in conjunction with DNN classifier are well discriminating the difference between leiomyosarcoma and leiomyoma in clinical sample. CONCLUSION: The transcriptome-based classifier accurately distinguished uterine leiomyosarcoma from leiomyoma. Our method can be helpful in clinical practice through the biopsy of sample in advance of surgery. Identification of leiomyosarcoma let the doctor avoid of laparoscopic surgery, thus it minimizes un-wanted tumor spread.


Assuntos
Leiomioma , Leiomiossarcoma , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/diagnóstico , Leiomiossarcoma/genética , Leiomiossarcoma/patologia , Diagnóstico Diferencial , Leiomioma/diagnóstico , Leiomioma/genética , Leiomioma/patologia , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Perfilação da Expressão Gênica/métodos
10.
Cell Mol Biol (Noisy-le-grand) ; 69(11): 173-179, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38015525

RESUMO

This atudy aimed to reveal the effect of DNA methylation on immune infiltration of uterine fibroids (UFs) and to further classify UFs based on transcriptomic characteristics. The transcriptome and DNA methylation data of UFs were collected from the GEO database. After taking the intersection of the differentially expressed genes in these two types of data, the intersection gene was used to draw ROC curves and to filtrate the candidate genes with AUC≥0.8. Immune infiltration analysis was performed in the online tool EPIC. The correlation between gene with AUC≥0.8 and the abundance of each immune cell type was calculated with |R|>0.3 and P<0.05. ConsensusClusterPlus package in R software was used to further cluster the samples of UFs. In this study, a total of 41 RNA-seq data (10 normal uterine samples and 31 UFs samples) and 34 DNA methylation data (10 from normal subjects and 24 from patients with UFs) were involved. The significantly down-regulated ICAM4, SPECC1L, and NOXO1 were the top three methylated drive genes of UFs. Therefore, NOXO1 and ICAM4 present an intimate correlation to immune cell infiltration. Besides, UFs could be clustered into two subtypes, including a TSAB1 up-regulated subtype and a FOSB up-regulated subtype. DNA methylation of ICAM4 and NOXO1 are involved in the pathogenesis of UFs via regulating immune cell infiltration. Further classification based on transcriptomic characteristics could divide UFs into sexual steroids-related and biomechanics-related subtypes, which would promote its non-invasive treatment.


Assuntos
Metilação de DNA , Leiomioma , Humanos , Metilação de DNA/genética , Fenômenos Biomecânicos , Perfilação da Expressão Gênica , Bases de Dados Factuais , Leiomioma/genética , Proteínas Adaptadoras de Transdução de Sinal , Moléculas de Adesão Celular
11.
Redox Biol ; 66: 102861, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666118

RESUMO

Uterine fibroids, the most common benign tumors of the myometrium in women, are characterized by abnormal extracellular matrix deposition and uterine smooth muscle cell neoplasia, with high recurrence rates. Here, we investigated the potential of the marine natural product manzamine A (Manz A), which has potent anti-cancer effects, as a treatment for uterine fibroids. Manz A inhibited leiomyoma cell proliferation in vitro and in vivo by arresting cell cycle progression and inducing caspase-mediated apoptosis. We performed target prediction analysis and identified sterol o-acyltransferases (SOATs) as potential targets of Manz A. Cholesterol esterification and lipid droplet formation were reduced by Manz A, in line with reduced SOAT expression. As a downstream target of SOAT, Manz A also prevented extracellular matrix deposition by inhibiting the ß-catenin/fibronectin/metalloproteinases axis and enhanced autophagy turnover. Excessive free fatty acid accumulation by SOAT inhibition led to reactive oxygen species to impair mitochondrial oxidative phosphorylation and trigger endoplasmic reticulum stress via PERK/eIF2α/CHOP signaling. The inhibitory effect of ManzA on cell proliferation was partially restored by PERK knockdown and eliminated by tauroursodeoxycholic acid, suggesting oxidative stress plays a critical role in the mechanism of action of Manz A. These findings suggest that targeting SOATs by Manz A may be a promising therapeutic approach for uterine fibroids.


Assuntos
Leiomioma , Estresse Oxidativo , Feminino , Humanos , Carbazóis , Leiomioma/tratamento farmacológico , Leiomioma/genética , Proliferação de Células
12.
J Mol Endocrinol ; 71(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668348

RESUMO

Abstract: Uterine fibroids (UFs) are benign tumors arising from the uterus, characterized by accumulation of abundant extracellular matrix (ECM) and sex steroid-dependent growth. Women with symptomatic UFs have reduced quality of life and decreased labor productivity. Among the driver gene mutations identified in UFs, mutations in MED12, a component of the cyclin-dependent kinase (CDK) Mediator module, are the most common and observed in 50-80% of UFs. They are gain-of-function mutations and are more frequently observed in Black women and commonly observed even in small UFs. MED12 mutation-positive UFs (MED12-UFs) often develop multiple rather than solitary and have distinct gene expression profiles, DNA methylomes, transcriptomes, and proteomes. Gene expressions related to ECM organization and collagen-rich ECM components are upregulated, and impaired Mediator kinase activity and dysregulation of Wnt/ß-catenin signaling are identified in MED12-UFs. Clinically, the UF shrinking effect of gonadotropin-releasing hormone agonists and ulipristal acetate is dependent on the MED12 mutation status. Understanding of characteristics of MED12-UFs and functions of MED12 mutations for UF tumorigenesis may elucidate the pathophysiology of UFs, leading to the development of new therapeutic options in women with symptomatic UFs.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Qualidade de Vida , Complexo Mediador/genética , Complexo Mediador/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patologia , Fatores de Transcrição/metabolismo , Mutação
13.
Cell Mol Life Sci ; 80(10): 288, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689587

RESUMO

Environmental exposure to endocrine-disrupting chemicals (EDCs) is linked to the development of uterine fibroids (UFs) in women. UFs, non-cancerous tumors, are thought to originate from abnormal myometrial stem cells (MMSCs). Defective DNA repair capacity may contribute to the emergence of mutations that promote tumor growth. The multifunctional cytokine TGFß1 is associated with UF progression and DNA damage repair pathways. To investigate the impact of EDC exposure on TGFß1 and nucleotide excision repair (NER) pathways, we isolated MMSCs from 5-month-old Eker rats exposed neonatally to diethylstilbestrol (DES), an EDC, or to vehicle (VEH). EDC-MMSCs exhibited overactivated TGFß1 signaling and reduced mRNA and protein levels of NER pathway components compared to VEH-MMSCs. EDC-MMSCs also demonstrated impaired NER capacity. Exposing VEH-MMSCs to TGFß1 decreased NER capacity while inhibiting TGFß signaling in EDC-MMSCs restored it. RNA-seq analysis and further validation revealed decreased expression of Uvrag, a tumor suppressor gene involved in DNA damage recognition, in VEH-MMSCs treated with TGFß1, but increased expression in EDC-MMSCs after TGFß signaling inhibition. Overall, we demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased genetic instability, arise of mutations, and fibroid tumorigenesis. We demonstrated that the overactivation of the TGFß pathway links early life exposure to EDCs with impaired NER capacity, which would lead to increased fibroid incidence.


Assuntos
Disruptores Endócrinos , Leiomioma , Feminino , Animais , Ratos , Reparo do DNA/genética , Dano ao DNA , Fator de Crescimento Transformador beta/genética , Carcinogênese , Disruptores Endócrinos/toxicidade , Leiomioma/induzido quimicamente , Leiomioma/genética
14.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686244

RESUMO

The objective of this study was to determine if the aberrant expression of select genes could form the basis for the racial disparity in fibroid characteristics. The next-generation RNA sequencing results were analyzed as fold change [leiomyomas/paired myometrium, also known as differential expression (DF)], comparing specimens from White (n = 7) and Black (n = 12) patients. The analysis indicated that 95 genes were minimally changed in tumors from White (DF ≈ 1) but were significantly altered by more than 1.5-fold (up or down) in Black patients. Twenty-one novel genes were selected for confirmation in 69 paired fibroids by qRT-PCR. Among these 21, coding of transcripts for the differential expression of FRAT2, SOX4, TNFRSF19, ACP7, GRIP1, IRS4, PLEKHG4B, PGR, COL24A1, KRT17, MMP17, SLN, CCDC177, FUT2, MYO5B, MYOG, ZNF703, CDC25A, and CDCA7 was significantly higher, while the expression of DAB2 and CAV2 was significantly lower in tumors from Black or Hispanic patients compared with tumors from White patients. Western blot analysis revealed a greater differential expression of PGR-A and total progesterone (PGR-A and PGR-B) in tumors from Black compared with tumors from White patients. Collectively, we identified a set of genes uniquely expressed in a race/ethnicity-dependent manner, which could form the underlying mechanisms for the racial disparity in fibroids and their associated symptoms.


Assuntos
Leiomioma , Transcriptoma , Feminino , Humanos , Etnicidade , Perfilação da Expressão Gênica , Genes cdc , Leiomioma/genética , Fatores de Transcrição SOXC , Proteínas Nucleares , Receptores do Fator de Necrose Tumoral , Proteínas de Transporte
15.
Front Endocrinol (Lausanne) ; 14: 1133260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576957

RESUMO

Background and objective: Uterine leiomyoma is the most common benign tumor in females of reproductive age. However, its causes have never been fully understood. The objective of our study was to analyze the causal association between various factors and uterine leiomyoma using Mendelian randomization (MR). Methods: Genetic variables associated with risk factors were obtained from genome-wide association studies. Summary-level statistical data for uterine leiomyoma were obtained from FinnGen and the UK Biobank (UKB) consortium. We used inverse variance weighted, MR-Egger, and weighted median methods in univariate analysis. Multivariable MR analysis was used to identify independent risk factors. A fixed-effect model meta-analysis was used to combine the results of the FinnGen and UKB data. Results: In the FinnGen data, higher genetically predicted age at natural menopause, systolic blood pressure (SBP), diastolic blood pressure (DBP), and fasting insulin were associated with an increased risk of uterine leiomyoma, while higher age at menarche was associated with a reduced risk of uterine leiomyoma. Multivariable MR analysis of SBP and DBP showed that higher DBP might be an independent risk factor of uterine leiomyoma. In the UKB data, the results for age at natural menopause, SBP, DBP, and age at menarche were replicated. The result of the meta-analysis suggested that uterine leiomyoma could also be affected by polycystic ovary syndrome (PCOS), endometriosis, and 2-hour glucose level. Conclusion: Our MR study confirmed that earlier menstrual age, hypertension, obesity, and elevated 2-hour glucose post-challenge were risk factors for uterine leiomyoma, and the causal relationship between smoking and uterine leiomyoma was ruled out. In addition, later age of menopause and endometriosis were found to increase the risk of uterine leiomyoma, while PCOS was found to decrease the risk.


Assuntos
Endometriose , Leiomioma , Síndrome do Ovário Policístico , Feminino , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Leiomioma/epidemiologia , Leiomioma/genética , Glucose
16.
Genes (Basel) ; 14(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628676

RESUMO

Leiomyomas (fibroids) are monoclonal tumors in which myometrial stem cells (MSCs) turn tumorigenic after mutation, abnormal methylation, or aberrant signaling. Several factors contribute to metabolic dysfunction in obesity, including abnormal cellular proliferation, oxidative stress, and DNA damage. The present study aims to determine how adipocytes and adipocyte-secreted factors affect changes in MSCs in a manner that promotes the growth of uterine leiomyomas. Myometrial stem cells were isolated from the uteri of patients by fluorescence-activated cell sorting (FACS) using CD44/Stro1 antibodies. Enzyme-linked immunosorbent assay (ELISA), Western blot, and immunocytochemistry assays were performed on human adipocytes (SW872) co-cultured with MSCs and treated with leptin or adiponectin to examine the effects of proliferation, extracellular matrix (ECM) deposition, oxidative damage, and DNA damage. Co-culture with SW872 increased MSC proliferation compared to MSC culture alone, according to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) results. The expressions of PCNA and COL1A increased significantly with SW872 co-culture. In addition, the expression of these markers was increased after leptin treatment and decreased after adiponectin treatment in MSCs. The Wnt/ß-catenin and TGF-ß/SMAD signaling pathways promote proliferation and ECM deposition in uterine leiomyomas. The expression of Wnt4, ß-catenin, TGFß3, and pSMAD2/3 of MSCs was increased when co-cultured with adipocytes. We found that the co-culture of MSCs with adipocytes resulted in increased NOX4 expression, reactive oxygen species production, and γ-H2AX expression. Leptin acts by binding to its receptor (LEP-R), leading to signal transduction, resulting in the transcription of genes involved in cellular proliferation, angiogenesis, and glycolysis. In MSCs, co-culture with adipocytes increased the expression of LEP-R, pSTAT3/STAT3, and pERK1/2/ERK/12. Based on the above results, we suggest that obesity may mediate MSC initiation of tumorigenesis, resulting in leiomyomas.


Assuntos
Leiomioma , Leptina , Humanos , beta Catenina , Adiponectina/genética , Obesidade/genética , Leiomioma/genética , Estresse Oxidativo , Dano ao DNA
17.
Cell Mol Life Sci ; 80(9): 274, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650943

RESUMO

BACKGROUND: The stage, when tissues and organs are growing, is very vulnerable to environmental influences, but it's not clear how exposure during this time causes changes to the epigenome and increases the risk of hormone-related illnesses like uterine fibroids (UFs). METHODS: Developmental reprogramming of myometrial stem cells (MMSCs), the putative origin from which UFs originate, was investigated in vitro and in the Eker rat model by RNA-seq, ChIP-seq, RRBS, gain/loss of function analysis, and luciferase activity assays. RESULTS: When exposed to the endocrine-disrupting chemical (EDC) diethylstilbestrol during Eker rat development, MMSCs undergo a reprogramming of their estrogen-responsive transcriptome. The reprogrammed genes in MMSCs are known as estrogen-responsive genes (ERGs) and are activated by mixed lineage leukemia protein-1 (MLL1) and DNA hypo-methylation mechanisms. Additionally, we observed a notable elevation in the expression of ERGs in MMSCs from Eker rats exposed to natural steroids after developmental exposure to EDC, thereby augmenting estrogen activity. CONCLUSION: Our studies identify epigenetic mechanisms of MLL1/DNA hypo-methylation-mediated MMSC reprogramming. EDC exposure epigenetically targets MMSCs and leads to persistent changes in the expression of a subset of ERGs, imparting a hormonal imprint on the ERGs, resulting in a "hyper-estrogenic" phenotype, and increasing the hormone-dependent risk of UFs.


Assuntos
Disruptores Endócrinos , Leiomioma , Animais , Ratos , Disruptores Endócrinos/toxicidade , Estrogênios , Bioensaio , Leiomioma/induzido quimicamente , Leiomioma/genética , Proteína de Leucina Linfoide-Mieloide , DNA
18.
Comput Biol Med ; 165: 107331, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619322

RESUMO

Long non-coding RNAs (lncRNAs) play crucial regulatory roles in various cellular processes, including gene expression, chromatin remodeling, and protein localization. Dysregulation of lncRNAs has been linked to several diseases, making it essential to understand their functions in disease mechanisms and therapeutic strategies. However, traditional experimental methods for studying lncRNA function are time-consuming, expensive, and offer limited insights. In recent years, computational methods have emerged as valuable tools for predicting lncRNA functions and their associations with diseases. However, many existing methods focus on constructing separate networks for lncRNA and disease similarity, resulting in information loss and insufficient processing capacity for isolated nodes. To address this, we developed 'RGLD' by combining Random Walk with restarting (RWR), Graph Neural Network (GNN), and Graph Attention Networks (GAT) to predict lncRNA-disease associations in a heterogeneous network. RGLD achieved an impressive AUC of 0.88, outperforming other methods. It can also predict novel associations between lncRNAs and diseases. RGLD identified HOTAIR, MEG3, and PVT1 as lncRNAs associated with uterine fibroids. Biological experiments directly or indirectly verified the involvement of these three lncRNAs in uterine fibroids, validating the accuracy of RGLD's predictions. Furthermore, we extensively discussed the functions of the target genes regulated by these lncRNAs in uterine fibroids, providing evidence for their role in the development and progression of the disease.


Assuntos
Leiomioma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Biologia Computacional/métodos , Redes Neurais de Computação , Leiomioma/genética , Algoritmos
19.
Am J Physiol Cell Physiol ; 325(4): C817-C822, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642233

RESUMO

Diseases such as uterine leiomyomata (fibroids and benign tumors of the uterus) and keloids (raised scars) may share common etiology. Fibroids and keloids can co-occur in individuals, and both are highly heritable, suggesting they may share common genetic risk factors. Fibroproliferative diseases are common and characterized by scarring and overgrowth of connective tissue, impacting multiple organ systems. These conditions both have racial disparities in prevalence, with the highest prevalence observed among individuals of African ancestry. Several fibroproliferative diseases are more severe and common in populations of sub-Saharan Africa. This mini-review aims to provide a broad overview of the current knowledge of the evolutionary origins and causes of fibroproliferative diseases. We also discuss current hypotheses proposing that the increased prevalence of these diseases in African-derived populations is due to the selection for profibrotic alleles that are protective against helminth infections and provide examples from knowledge of uterine fibroid and keloid research.


Assuntos
Queloide , Leiomioma , Feminino , Humanos , Queloide/genética , Queloide/patologia , Leiomioma/genética , Leiomioma/patologia , Fibrose , Útero
20.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607000

RESUMO

Uterine leiomyomas cause heavy menstrual bleeding, anemia, and pregnancy loss in millions of women worldwide. Driver mutations in the transcriptional mediator complex subunit 12 (MED12) gene in uterine myometrial cells initiate 70% of leiomyomas that grow in a progesterone-dependent manner. We showed a distinct chromatin occupancy landscape of MED12 in mutant MED12 (mut-MED12) versus WT-MED12 leiomyomas. Integration of cistromic and transcriptomics data identified tryptophan 2,3-dioxygenase (TDO2) as the top mut-MED12 target gene that was significantly upregulated in mut-MED12 leiomyomas when compared with adjacent myometrium and WT-MED12 leiomyomas. TDO2 catalyzes the conversion of tryptophan to kynurenine, an aryl hydrocarbon receptor (AHR) ligand that we confirmed to be significantly elevated in mut-MED12 leiomyomas. Treatment of primary mut-MED12 leiomyoma cells with tryptophan or kynurenine stimulated AHR nuclear translocation, increased proliferation, inhibited apoptosis, and induced AHR-target gene expression, whereas blocking the TDO2/kynurenine/AHR pathway by siRNA or pharmacological treatment abolished these effects. Progesterone receptors regulated the expression of AHR and its target genes. In vivo, TDO2 expression positively correlated with the expression of genes crucial for leiomyoma growth. In summary, activation of the TDO2/kynurenine/AHR pathway selectively in mut-MED12 leiomyomas promoted tumor growth and may inform the future development of targeted treatments and precision medicine.


Assuntos
Leiomioma , Neoplasias Uterinas , Feminino , Humanos , Triptofano , Cinurenina/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Triptofano Oxigenase/genética , Triptofano Oxigenase/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Leiomioma/genética , Leiomioma/metabolismo , Leiomioma/patologia , Mutação , Complexo Mediador/genética , Complexo Mediador/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...